
Journal of Global Optimization 26: 361–385, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

361

Minimum Distance Between the Faces of Two
Convex Polyhedra: A Sufficient Condition

B. LLANAS, M. FERNANDEZ DE SEVILLA and V. FELIU
Dpto. de Matemática e Informática, E.T.S.I. de Caminos, Ciudad Universitaria, 28040-Madrid,
Spain and Dpto. de Ingeniería Eléctrica, E.T.S.I Industriales, Campus Universitario s/n ,
13071-Ciudad Real, Spain

Abstract. The problem of finding the Euclidean distance between two convex polyhedra can be
reduced to the combinatorial optimization problem of finding the minimum distance between their
faces. This paper presents a global optimality criterion for this problem. An algorithm (QLDPA)
for the fast computation of the distance between convex and bounded polyhedra is proposed as an
application of it. Computer experiments show its fast performance, especially when the total number
of vertices is large.

Key words: Distance between convex polyhedra, Local descent, Projection algorithms, Sufficient
condition of global minimum

1. Introduction

The calculation of the distance between bodies has great importance in many ap-
plications: collision avoidance in Robotics (Halperin et al., 1997; Khatib, 1986),
Virtual Reality simulations (Vince, 1995), and many more.

Some widely used programs in Virtual Reality (VRML, Superscape, etc.) rep-
resent solids by means of polyhedra. Therefore, they need to include procedures to
calculate the distance between polyhedra in real time.

Realistic modelization of solids requires the use of polyhedra with many ver-
tices, but to our knowledge, data for large polyhedra (more than 350 vertices each)
have not been reported.

Let P and Q be two convex polyhedra in R3. The problem is to find a point
a ∈ P and another point b ∈ Q such that

d(a, b) = min
x∈P
y∈Q

d(x, y) ≡ d(P ,Q) (1)

A good algorithm for solving (1) should have the following features
1. Find the exact solution or a good approximation.
2. Short computation time.
3. Slow growth of the CPU time versus the complexity of the polyhedra in-

volved.

362 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

4. Moderate dependence of the CPU time on the relative position of the poly-
hedra.

Several methods for solving (1) have been proposed

1.1. ALGORITHMS BASED ON STANDARD OPTIMIZATION METHODS

(1) is a quadratic minimization problem subjected to linear constraints and can be
solved by conventional optimization methods.

An interior penalty function method with a sequence of unconstrained minimiz-
ations would accomplish the goal, but it would also require a large number of iter-
ations to achieve an accurate solution. A quadratic programming method (Lemke’s
method) has been reported in (Hurteau and Stewart, 1988), but its computation
time seems to be long.

An approach based on Rosen’s gradient projection method has been studied
in Bobrow (1989). In Zeghloul et al. (1992) it is proved that the above method
can generate a zigzaging phenomenon when the Kuhn-Tucker conditions are not
satisfied for both objects. These critical situations increase the number of iterations
and can subsequently curb the convergence of the process. To cope with this phe-
nomenon they propose an algorithm based on a new optimal search direction. This
algorithm is better than Bobrow’s but its computation time is long in comparison
with other methods.

Therefore, the studied classical optimization algorithms do not satisfactorily
verify features 1 and 2.

1.2. ALGORITHMS THAT REDUCE (1) TO THE PROBLEM OF FINDING THE

MINIMUM EUCLIDEAN NORM OF THE POINTS OF A POLYTOPE

Let P and Q be a given pair of finite sets of points of Rn. Let us denote the convex
hull of P by C(P) and the Minkowski difference of P and Q by

P − Q = {p − q / p ∈ P, p ∈ Q}
We have

d(C(P), C(Q)) = d(0, C(P − Q)) (2)

A basic optimality criterion and an algorithm for solving the right hand side of (2)
can be found in Wolfe (1976). A dual algorithm for solving the same problem is
described in Fujishinge and Zhan (1990). In Fujishinge and Zhan (1992) the above
algorithm is extended for finding the nearest pair of points.

A recursive algorithm, based on Wolfe’s criterion, for finding a pair of closest
points in two polytopes has been proposed in Sekitani and Yamamoto (1993). The
CPU time of a nonrecursive version of the Sekitani-Yamamoto algorithm grows
fast with the total number of vertices (Llanas et al., 2000).

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 363

An algorithm (GJK) for finding the distance between two polytopes, which is
based on the concept of support function and (2), has been proposed in Gilbert et
al. (1988). The CPU-time behavior of GJK, although linear in the total number of
vertices, presents a rather fast growth.

1.3. GEOMETRIC ALGORITHMS

In Dobkin and Kirkpatrick (1990) a hierarchical collection of polytopes, each con-
tained in its predecessor, is used to represent polyhedra. This representation allows
for efficient computation of minimum distance. Numerical experiments on this al-
gorithm have not been reported. In Red (1983) an exhaustive search of the distance
between all the pairs of bounded planar facets of two polyhedra is used to obtain the
minimum distance. The expected running time of this algorithm is O(N1.N2) (N1

and N2 being the number of faces of each polyhedron respectively), consequently,
this procedure is not suitable for computing the distance between large polyhedra
(Llanas et al., 2000).

In Lin (1993) a different approach is described: The Lin-Canny (LC) algorithm.
This method starts with a candidate pair of features (vertex, edge or face), one from
each polyhedron and check whether the closest points lie on the features. This
is done by means of the ‘Applicability Criteria’ which are based on the Voronoi
region of each feature. When a pair of features fail the test, the new pair choosen is
guaranteed to be closer than the older one. The algorithm must end in a number of
steps which are at least equal to the number of feature pairs. The CPU time of this
algorithm is linear in the total number of vertices but it appears to grow relatively
fast.

1.4. OTHER ALGORITHMS

In Cameron (1997) a modification of GJK algorithm, which is based on a technique
for minimizing a homogeneous linear function on the vertices of a polyhedron
called ‘hill climbing’, is described. The resulting algorithm (GJKC) is very fast but
there is a lack of data for large polyhedra.

In Llanas et al. (2000) another procedure, the ‘swap’ algorithm (SA), is pro-
posed. In this method we consider the operator πPQ ≡ πP ◦ πQ where πP and πQ

represent the projection operators onto the polyhedra P and Q, respectively. Since
πPQ is nonexpansive, the theory of nonexpansive operators in Hilbert spaces states
that

• πPQ has at least a fixed point a. This implies that a and πQ(a) = b are a
nearest pair of points in P and Q (the number of these pairs can be infinite
in some cases).

364 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

Figure 1. Case of slow convergence of SA.

• Point a can be computed from an initial point x1 ∈ P by means of the
following iterative process

xn+1 = t xn + (1 − t) πPQ(xn) t ∈ (0, 1)

The projection onto a polyhedron πP is quickly computed using the local search
method (LSABF) introduced in Llanas et al (2000). This method obtains the projec-
ted point, in the case of ‘quasi-spherical’ polyhedra, with an expected running time
O(

√
N) (N being the number of vertices of the polyhedron). Another procedure

of projection (more general but less efficient) can be seen in Llanas and Moreno
(1996).

Although SA has shown a fast convergence in a set of computer experiments
(the convergence is achieved in only two iterations, that is, four projections point-
polyhedron), we have also found that the convergence can be slow in the case of
nearby polyhedra with quasiparallel nearest parts of their respective boundaries, if
high precision is required (Figure 1).

In this paper, we discretize (1) according to Red’s method using the distance
between faces instead of between points. If F(P) and F(Q) denote the set of faces
of P and Q respectively, the distance between the polyhedra can be calculated by

d(P ,Q) = min
A∈F(P)
B∈F(Q)

d(A,B) (3)

Note that (3) is not valid if a polyhedron is completely contained in the other. This
must be kept in mind in the design of any algorithm based on this formula.

We give a global minimum criterion for the distance between two faces to be the
minimum in (3). Based on this sufficient (but not necessary) condition we propose a
new method for solving (1): the quasilocal descent-projection algorithm (QLDPA).
This algorithm reduces the problem (3) to the computation of a comparatively little
number of distances between polygons in R3. QLDPA overcomes the problems of
SA and exhibits a slow growth of CPU time versus the total number of vertices.

This paper is organized as follows: Section 2 provides the global optimality
result, Section 3 describes the new algorithm and gives a proof of its convergence,

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 365

Figure 2. Minima of d.

Section 4 details numerical experiments and discussion of the results and Section
5 provides some concluding remarks.

2. A sufficient condition for the distance between the faces of two convex
polyhedra to be minimum

First, we emphasize the difference between local and global minima of the function
which appears at the right side of (3), by means of an example in R2.

The global minimum is reached at the faces (A,B), but a local minimum at
faces (A,B ′) exists (Figure 2).

If we consider the fact that the local minimum is reached at a pair of invisible
faces while the global minimum is at a pair of reciprocally visible faces (RV) we
have a clue for finding the cited sufficient condition.

We will now state the above intuitive concepts more precisely. From now on,
R3 will denote the Euclidean 3-space. The closed and half-open segments in R3

are defined by

[a, b] ≡ {x ∈ R3/x = a + t (b − a), t ∈ [0, 1]}

]a, b] ≡ {x ∈ R3/x = a + t (b − a), t ∈ (0, 1]}
d denotes the Euclidean distance, “.” denotes the inner product in R3, and |v| the
Euclidean norm of v.

A face A of a polyhedron P can be considered as an oriented polygon, that is,
a polygon with a normal vector nA oriented toward the exterior of P . We represent
it by (A, nA) and denote by F(P) the set of faces of P .

366 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

• Let P be a polyhedron and b ∈ R3. We say that the face (A, nA) is visible
from b if for any a ∈ A we have

(a − b).nA � 0

The set of faces of P visible from b will be denoted by V isP (b).
• If (A, nA) ∈ F(P) and (B, nB) ∈ F(Q) we say that they are reciprocally

visible if there exists a nearest pair of points in the two faces a ∈ A and
b ∈ B such that (A, nA) is visible from b and (B, nB) is visible from a. We
will denote this relation by (A,B) ∈ RV .

The first definition is obviously independent of the point a ∈ A. The second defin-
ition is also independent of the nearest pair of points a and b as is proven in the
following Lemma.

LEMMA 1. Let A and B be two closed convex sets in R3, such that, A ∩ B = ∅.
If (a, b) and (a′, b′) are nearest pairs of points in A and B respectively, then

a − b = a′ − b′

Proof. Since b is the projection of a onto B (Balakrishnan, 1981, p. 10)

(b − a).(q − b) � 0 ∀q ∈ B (4)

Since a is the projection of b onto A

(b − a).(a − p) � 0 ∀p ∈ A (5)

Since b′ − a′ = b′ − b + b − a + a − a′, we have

|b′−a′|2 =|b−a|2 + |b′−b+a−a′|2 + 2(b−a).(b′−b) + 2(b−a).(a−a′)

By (4) and (5) the last two addends are not negative. Thus, since |b′ −a′| = |b−a|,
we have

|b′ − b + a − a′| = 0

The result follows. �
We will use the following lemmas further on.

LEMMA 2. Let a, b, c, d ∈ R3 be such that |d − c| < |b − a|. Then at least one
of the quantities (b − a).(d − b) and (b − a).(a − c) is negative.

Proof.

|d − c|2 = |(b − a) + (a − c + d − b)|2 =
= |b − a|2 + |a − c + d − b|2 + 2(b − a).(a − c + d − b)

Hence

0 > |d − c|2 − |b − a|2 � 2(b − a).(a − c) + 2(b − a).(d − b)

The result follows. �

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 367

LEMMA 3. Let a, b, d ∈ R3 be such that (b − a).(d − b) < 0. For t ∈ (0, 1] let
us define bt = b + t (d − b). Then d(a, bt) < d(a, b) for t > 0 small enough.

Proof.

|bt − a|2 = |b − a + t (d − b)|2
= |b − a|2 + 2t (b − a).(d − b) + t2|d − b|2

The result follows. �
The next result will establish that if a local minimum of the function distance
between faces is reached at a pair of reciprocally visible faces, then it is the global
minimum.

Previous to the proof of this statement, we need to introduce some definitions
and an auxiliary function studied in Llanas et al. (2000).

From now on, if A ∈ F(P), we denote by N(A) the set of faces of P which
have a point or an edge in common with A excluding from this set A itself. We
denote by NA the number of elements of N(A).

Let b be an external point to P and x a point belonging to P . We denote by ∂P
the boundary of P . Using the notation I = [x, b] ∩ ∂P we define the auxiliary
function f as follows

f : P → ∂P

x → {z/z ∈ I and |z − b| � |y − b| ∀y ∈ I }
The function f has the following properties (Llanas et al., 2000)

1. f is continuous on P .
2. If x ∈ V isP (b) then f (x) = x
3. For all x ∈ P we have that f (x) ∈ V isP (b)

4. If x ∈ P and x /∈ V isP (b) then f (x)
= x

LEMMA 4. Let P and Q be two convex polyhedra. Let A ∈ F(P) and B ∈ F(Q)

be such that (A,B) ∈ RV . If A′ ∈ F(P) and B ′ ∈ F(Q) such that d(A′, B ′) <

d(A,B) then there exists B̃ ∈ N(B) verifying d(A, B̃) < d(A,B) or there exists
Ã ∈ N(A) verifying d(Ã, B) < d(A,B) or both.

Proof. Let a ∈ A and b ∈ B be a nearest pair of points of the faces A and B,
and c ∈ A′ and d ∈ B ′ a nearest pair of points of the faces A′ and B ′. We have
by hypothesis that d(c, d) < d(a, b). By Lemma 2 we have that only one of the
following posibilities can arise

• (b − a).(d − b) < 0 and (b − a).(a − c) � 0
• (b − a).(d − b) � 0 and (b − a).(a − c) < 0
• (b − a).(d − b) < 0 and (b − a).(a − c) < 0

We only give the proof in the first case, the others are similar.
Since (b−a).(d−b) < 0, Lemma 3 states that there exists b′ ∈]b, d] arbitrarily

near to b and satisfying

d(a, b′) < d(a, b) (6)

368 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

From the continuity of the auxiliary function f referred to the point a and the
polyhedron Q, we have that given ε > 0, there exists δ > 0 such that

f [Bδ(b) ∩ Q] ⊂ Bε(f [b]) ∩ ∂Q

where Bγ (c) is the open ball of radius γ centered in c. Since b belongs to a visible
face from a we have that f (b) = b and therefore

f [Bδ(b) ∩ Q] ⊂ Bε(b) ∩ ∂Q

If we take a point b′ ∈ Bδ(b)∩]b, d] (]b, d] is contained in Q by convexity) that
satisfies (6) then we have that f (b′) ∈ Bε(b) ∩ ∂Q, and

d(a, f (b′)) � d(a, b′) < d(a, b)

Therefore a point exists on the boundary ∂Q arbitrarily close to the face B and
placed on a face B̃ visible from a, that is, B̃ ∈ N(B), B̃ ∈ V isQ(a) and d(A, B̃) <

d(A,B). �
The above result can be stated in the following equivalent form, that constitutes the
sufficient condition of global minimum.

THEOREM 1. Let P and Q be two convex polyhedra. Let A ∈ F(P) and B ∈
F(Q) be such that (A,B) ∈ RV . If

1. d(Ã, B) � d(A,B) for all Ã ∈ N(A);
2. d(A, B̃) � d(A,B) for all B̃ ∈ N(B);

then

d(A,B) � d(A′, B ′) for all A′ ∈ F(P) and for all B ′ ∈ F(Q).

Hypotheses 1 and 2 are, in fact, the formal definition of local minimum of the
distance between faces. The existence of at least a pair of faces verifying these
hypotheses can be proven using the results presented in Llanas et al. (2000).

3. The quasilocal descent-projection algorithm

In this section we describe a new algorithm for finding the distance between two
convex and bounded polyhedra: The quasilocal descent-projection algorithm (QLDPA).
The polyhedra must be represented by the data of the faces (Section 4.1).

The main idea of QLDPA consists of performing a local descent from an arbit-
rary pair of reciprocally visible faces (A0, B0) to a “neighbouring” pair (A0, B̃) ∈
RV or (Ã, B0) ∈ RV in such a way that the distance between the faces decreases.
The process is repeated until reaching a local minimum which is, by Theorem 1,
the global one.

This naive algorithm is not feasible due to the following facts

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 369

Figure 3. Faces A and B have the WV D property.

• It seems difficult to find two initial reciprocally visible faces without an
exhaustive search.

• In general, there exist pairs of faces (A,B) verifying
∗ (A,B) ∈ RV .
∗ The global minimum of the distance between faces is not attained at

(A,B).
∗ If Ã ∈ N(A) is such that d(Ã, B) < d(A,B) then (Ã, B) /∈ RV and

if B̃ ∈ N(B) is such that d(A, B̃) < d(A,B) then (A, B̃) /∈ RV .
We denote such a pair of faces without the possibility of visible descent
by (A,B) ∈ WV D. Figure 3 shows an example in the plane. The above
algorithm would stop if it arrived at a WV D pair of faces.

For avoiding this difficulty we modify the algorithm in the following way (Pro-
jection Step): If a pair (A,B) ∈ WV D is reached in the descent process, and a ∈ A

and b ∈ B are such that d(a, b) = d(A,B), we compute bp = πQ(a) (projection
of a on Q) and then ap = πP (bp) (projection of bp on P). We determine a face
Bj such that bp ∈ Bj . If the test of convergence of SA fails and (A,Bj) ∈ RV

we apply a local descent step. Otherwise we project again according to the meth-
odology of SA, but keeping in mind the RV property of the faces that contain the
projected points. When a subsequent pair of faces is reciprocally visible, we apply
a local descent step and so on.

In this way, we have a global minimum convergence test after a little number of
steps of the SA avoiding unnecessary projections when the faces reached are a pair
of nearest ones. On the other hand this procedure allows the stop of the algorithm
when it arrives at a WV D pair of faces to be avoided.

Figure 4 shows a simplified flowchart of QLDPA.
If local (visible or invisible) descent cannot be performed from a pair of RV

faces, the sufficient condition of global minimum (SCGM) is applied.

370 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

Figure 4. General flowchart of QLDPA.

After a projection step, the convergence condition of the ‘swap’ algorithm (CCSA)
is applied.

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 371

3.1. QUASILOCAL DESCENT-PROJECTION ALGORITHM (QLDPA)

Below we give a FORTRAN 90-like pseudocode of QLDPA. We assume that the
data of both polyhedra, the precision EPS and the parameter t have been read. We
will use the following notation

FP(x) = {Ai ∈ F(P)/x ∈ Ai}
When x is the projection of a point onto P , FP(x) can be computed by the projec-
tion algorithm LSABF (Llanas et al., 2000).

I (Start)

– Choose two faces A0 ∈ F(P) and B0 ∈ F(Q)

at random or with some strategy (Section 4).
– Find a nearest pair of points a0 and b0

in the faces A0 and B0.
– Compute the distance between A0 and B0

D = d(A0, B0) = d(a0, b0)

if (a0 = b0) then
print d(P ,Q) = 0
STOP

endif
a = a0

A = A0, B = B0

if [(A,B) ∈ RV] then
go to II(1)

else
go to V(1)

endif

372 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

II (Descent)

(1) V IS = 1
d = D

do i = 1,, NA (Ai ∈ N(A))
- Find a nearest pair
of points ai and bi

in the faces Ai and B.
- Compute the distance
between Ai and B

di = d(Ai, B) = d(ai , bi)

if (di = 0) then
print d(P ,Q) = 0
STOP

endif
if (di < d) then

if ((Ai, B) ∈ RV) then
D = di , A = Ai

go to II(1)
else

a = ai

D = di

V IS = 0
endif

endif
enddo
go to III

III (Descent)

do j = 1,, NB (Bj ∈ N(B))
- Find a nearest pair
of points aj and bj

in the faces A and Bj .
- Compute the distance
between A and Bj

dj = d(A,Bj) = d(aj , bj)

if (dj = 0) then
print d(P ,Q) = 0
STOP

endif
if(dj < d) then

if ((A,Bj) ∈ RV) then
D = dj , B = Bj

go to II(1)
else

a = aj

D = dj

V IS = 0
endif

endif
enddo
go to IV

In II and III, V IS = 1 indicates that (A,B) ∈ RV and the possibility of visible
descent must be checked.

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 373

IV (Descent)

if (V IS = 1) then
print d(P ,Q) = D

STOP
else

go to V (1)
endif

V (Projection)

- (1) Compute bp = πQ(a)

- Compute ap = πP (bp)

if (bp ∈ P , that is, ap = bp) then
print d(P ,Q) = 0
STOP

endif
Find Ai ∈ FP(a) and Bj ∈ FP(bp)

if (d(ap, a) < EPS) then
print d(P ,Q) = d(Ai, Bj)

STOP
else if ((Ai, Bj) ∈ RV) then

D = d(Ai, Bj) = d(pa, pb)

A = Ai , B = Bj

go to II (1)
else

a = ta + (1 − t)ap
go to V(1)

endif

In IV, V IS = 1 indicates that the previous pair (A,B) ∈ RV in II-III is the sought
solution and V IS = 0 indicates that the previous pair (A,B) in II-III is a WV D

one.

For proving the convergence of QLDPA we need the following result

LEMMA 5. Let P and Q be two closed convex sets in Rn, let us consider the
operator πPQ ≡ πP ◦ πQ where πP and πQ represent the projection operators
onto the sets P and Q, respectively. Let a1 be an arbitrary point of P . Let us
define the sequence

an+1 = tan + (1 − t)πPQ(an)

If we call dQ(an) the distance from an to Q, we have

dQ(an+1) � dQ(an) f or all n. (7)

Proof. The distance from a point to a fixed, non-empty and convex set in Rn is
a convex function (Rockafellar, 1970, p. 34), therefore

dQ(an+1) = dQ(tan + (1 − t)πPQ(an))

374 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

� tdQ(an) + (1 − t)dQ(πPQ(an)) (8)

On the other hand, we have

dQ(an) = |an − πQ(an)| � |πP (πQ(an)) − πQ(an)|
� |πP (πQ(an)) − πQ(πP (πQ(an)))| = dQ(πPQ(an)) (9)

Inequality (7) follows from (8) and (9). �
THEOREM 2. QLDPA converges to a nearest pair of points a and b in the poly-
hedra P and Q, when EPS → 0.

Proof. The algorithm consists of the repetition (infinite or until achieving con-
vergence) of successive steps of the following types: D1,D2, P1, P2.

Steps of type D (Descent)

data: Two RV faces and their distance D. We have one of the following possib-
ilities

• The sufficient condition of global minimum is satisfied (convergence).
• By descent we arrive at a pair of RV faces and evaluate their distance D

′

(Step D1).
• By descent we arrive to a pair of faces which are not reciprocally visible and

calculate a nearest pair of points a and b in them and their distance D
′
(Step

D2).

Steps of type P (Projection)

data: A point a on the polyhedron P and the previous distance D.
Calculate the double projection ap = πP (πQ(a)) and the faces containing a

and bp.
Verify the convergence condition |a − ap| < EPS. Then we have one of the

following possibilities
• Convergence.
• If the faces containing a and bp are reciprocally visible then calculate their

distance D
′
and begin a new step of type D (Step P1).

• If the above pair of faces does not have the RV property, make a = ta+ (1−
t)ap and begin a new step of type P (Step P2).

From the above definitions we have that the four types of steps must appear in the
following order

D1 → D1 or D2

D2 → P1 or P2

P1 → D1 or D2

P2 → P1 or P2

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 375

First, we prove that the sequence of distances between faces generated by the al-
gorithm {D} is monotonically decreasing. In effect, steps of type D1 or D2 calculate
a new distance D

′
, such that, D

′
< D. Type P2 steps do not evaluate a new distance

in an explicit way. From the above stated order we conclude that steps P1 only can
appear in one of the following ways

1. D2, P1

2. I0, P1

3. I0, P2, P2,(k times)..., P2, P1

4. D2, P2, P2,(k times)..., P2, P1

where we denote by I0 a pair of arbitrary initial faces A and B. We have in the four
cases that D

′ � D. In effect, in cases 1 and 2 we begin with a pair of faces which
are separated by a distance D attained at the points a and b.

We have

D
′ = d(pa, pb) � d(a, bp) � d(a, b) = D

In cases 3 and 4 we also begin with a pair of faces separated by a distance D

attained at the points a and b.
In the first application of P2, we have

d(a1, bp1) � d(a, b) (here, a1 = a)

In the steps that follow, several points an on P are computed by means of the
formula

an+1 = tan + (1 − t)πPQ(an)

By Lemma 5, the sequence {d(an, bpn)} is monotonically decreasing.
Therefore, after k steps P2 and one step P1 we have

D
′ = d(pa, pb) � d(ak+1, bpk+1) � � d(a1, bp1) � d(a, b) = D

And the new distance is less than or equal to the initial one.
The above results imply that {D} is monotonically decreasing.
The convergence criterion contained in IV is a direct consequence of Theorem

1. The convergence criterion in V is that corresponding to SA.
The only way of divergence of QLDPA would be the generation of an infinite

sequence of steps Di, Pj , ... that do not satisfy any of the previous criteria. Since
the sequence {D} is monotonically decreasing, the number of steps of type D in
the sequence is finite because

• The distance is strictly decreased in every step of type D, this means that
every pair of faces is visited only one time.

• The number of pairs of faces is finite.
Since P1 must be followed by a step of type D the same reasoning implies that P1

can only appear a finite number of times.

376 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

This means that from a given term onward the algorithm is a succession of
steps of type P2. Therefore the algorithm coincides with SA and is convergent as
was proven in Llanas et al (2000). �

4. Computational Experiments

4.1. EXPERIMENTAL METHODOLOGY

To calculate the distance between different types of polyhedra of increasing degree
of complexity we have used QLDPA.

QLDPA was programmed using Watcom C, and the computer experiments were
performed using a Pentium III (866 Mhz) processor.

As projector onto a polyhedron we used LSABF (Llanas et al., 2000). In this pa-
per we have improved the above implementation of LSABF using a ‘hill climbing’
method for finding an initial visible face.

Experiments are shown in Figures 5,6 and 10. They are as follows
• Tetrahedron: four vertices and four faces.
• Parallelepiped: eight vertices and six faces.
• Icosahedron: twelve vertices and twenty faces. The considered icosahedra

have been obtained by means of rigid motions of the following one

Vertices of the reference icosahedron

(0,t, 1) (0,-t,-1) (0, t, -1) (0, -t, 1) (1, 0, t) (-1, 0, t)

(1,0,-t) (-1, 0, -t) (t,1,0) (-t, -1, 0) (t,-1,0) (-t, 1, 0)

Here t = 1.618034.
• Polyhedra of type E : This kind of polyhedra are those transformed by a rigid

motion of polyhedra inscribed in the ellipsoid

x2

a2
+ y2

b2
+ (z − c)2

c2
= 1 (10)

The ellipsoid has been subdivided axially (z axis) into m parts and radially
(xy plane) into n parts. The resulting polyhedron has (m − 2)n + 2 vertices
and (m − 1)n faces.

• Polyhedron of ‘ladder’ type: 14 vertices and 9 faces (left side of Figure 10).
Previous to the presentation of the results, some remarks are necessary.

• The choice of the initial faces A0 ∈ F(P) and B0 ∈ F(Q) of QLDPA has
been made by means of the following procedure
1. Calculate the centers cp and cq of the bounding boxes of P and Q the

sides of which are parallel to the coordinate axes (Glaeser, 1994). When

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 377

Figure 5. Tetrahedron and Parallelepiped.

−0.5

0

0.5

−0.5

0

0.5
0

5

10

15

20

Figure 6. Icosahedron and Polyhedron of type E .

the polyhedra are transformed by a rigid motion, cp and cq are trans-
formed according to it. If cp or cq are not contained inside the polyhedra,
the respective barycenters can be used.
Put s = cq − cp.

2. If |s| = 0 then d(P ,Q)= 0.
3. Determine a vertex v0 ∈ V (Q) such that

v0.s � vj .s ∀vj ∈ V (Q)

where V (Q) denotes the set of vertices of Q.
4. Calculate the projection p = πP (v0). Put r = p − v0.
5. If |r| = 0 then d(P ,Q)= 0.
6. Determine a face (PA, n) ∈ F(P) such that p ∈ PA and r.n � 0 (this

is always feasible (Llanas et al., 2000)).
7. Determine a face (B, nB) ∈ F(Q) such that v0 ∈ B and preferably

fulfilling r.nB � 0.
8. Finally, make A0 = PA and B0 = B

By carrying out the procedure 1–8 we increase the probability of starting the
algorithm with two reciprocally visible faces. In any case, the resulting faces
are fairly near in comparison to the remaining pairs.

378 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

Table 1. Low complexity experiments (time × 10−6s)

N m n EPS t PREC TSA NISA TQLDPA NDP

8 - - 10−6 0 < 10−6 38 2 93 7

16 - - 10−6 0 < 10−6 44 2 143 9

24 - - 10−6 0 < 10−6 124 2 294 19

44 7 4 10−6 0 < 10−6 98 2 411 17

104 7 10 10−6 0 < 10−6 136 2 418 17

224 13 10 10−6 0 < 10−6 137 2 421 17

304 17 10 10−6 0 < 10−6 134 2 418 17

424 23 10 10−6 0 < 10−6 134 2 421 17

504 27 10 10−6 0 < 10−6 142 2 423 17

704 37 10 10−6 0 < 10−6 148 2 473 17

• The algorithm needs the following topological data for every polyhedron
processed

∗ Number of vertices and faces of P .
∗ Number and description of the vertices of every face.
∗ Number and description of the vertices adjacent to every vertex.
∗ Number and description of the faces adjacent to every face.
∗ Number and description of the faces intersecting in every vertex.

It also uses the coordinates of the vertices of each polyhedron.

• Compute time for two given polyhedra in a fixed position is calculated as
the average of 10000 repetitions of the experiment and expressed in micro-
seconds.

4.2. CPU TIME VERSUS POLYHEDRA COMPLEXITY EXPERIMENTS

Tables 1 and 2 give the results corresponding to low and high complexity polyhedra
respectively.

The CPU time that appears in the Tables is averaged from five different relative
positions (by translation and rotation) of the polyhedra. In all the cases, we have
made a = b = c = 0.5 in (10), but in one of the five experiments we have
deformed one of the polyhedra making c = 10.

We compare QLDPA with the ‘swap’ algorithm (SA) (Llanas et al., 2000). This
procedure was tested on the same examples as QLDPA.

The Tables use the following notation.
– N: Sum of the vertices of both polyhedra.

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 379

Table 2. High complexity experiments (time × 10−6s)

N m n EPS t PREC TSA NISA TQLDPA NDP

1024 53 10 10−6 0 < 10−6 150 2 429 17

2024 103 10 10−6 0 < 10−6 164 2 435 17

4024 203 10 10−6 0 < 10−6 196 2 457 17

5024 253 10 10−6 0 < 10−6 207 2 466 17

6024 303 10 10−6 0 < 10−6 238 2 483 17

8024 403 10 10−6 0 < 10−6 261 2 529 17

9024 453 10 10−6 0 < 10−6 315 2 567 17

10024 503 10 10−6 0 < 10−6 342 2 613 17

11024 553 10 10−6 0 < 10−6 417 2 633 17

12024 603 10 10−6 0 < 10−6 434 2 683 17

14024 703 10 10−6 0 < 10−6 717 2 825 17

16024 803 10 10−6 0 < 10−6 1000 2 1060 17

17024 853 10 10−6 0 < 10−6 1069 2 1062 17

18024 903 10 10−6 0 < 10−6 1238 2 1167 17

19024 953 10 10−6 0 < 10−6 1326 2 1186 17

20024 1003 10 10−6 0 < 10−6 1474 2 1288 17

21024 1053 10 10−6 0 < 10−6 1603 2 1355 17

22024 1103 10 10−6 0 < 10−6 1713 2 1437 17

24024 1203 10 10−6 0 < 10−6 1974 2 1559 17

– m,n: Axial and radial subdivisions of the ellipsoid, for generating each E-
polyhedron.

– EPS: Stopping criterion.
– t : Parameter of SA and QLDPA.
– PREC: Precision obtained by SA and QLDPA. It depends on EPS and t and

it is expressed as

|computed distance − exact distance|
– NISA: Number of iterations of the ‘swap‘ algorithm (every iteration consists

of two projections).
– TSA: CPU time of SA.
– TQLDPA: CPU time of QLDPA.
– NDP: Number of distances between polygons (in R3) evaluated by QLDPA.
In the first experiment we used tetrahedra, in the second parallelepipeds, in the

third icosahedra and in the remainder E-polyhedra with the values of m and n given
in Table 1.

In all the experiments (Tables 1 and 2), the optimal value found for the para-
meter t is 0. The number of iterations of SA increases with t .

380 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

450

500

QLDPA

SA

N

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

Figure 7. Low complexity.

The results of Table 1 can be shown as a graph of input complexity versus
runtime. Here ‘Input Complexity’ is simply the sum of the number of vertices of
the two polyhedra considered (N).

Figure 7 shows that, for low complexity problems, SA exhibits better time than
QLDPA. This is due to the following

– In this range of complexity (0–700) more than 90 percent of the CPU time of
QLDPA is used for computing the distance between polygons in R3.

– The algorithm used for this task is the one proposed in Red (1983). Although
exact, this method seems to be rather slow.

A comparison with the data appearing in other references is difficult because they
have been obtained using different computers, operating systems, programming
languages and representation of the polyhedra involved. We can estimate, with due
precaution that, for low complexity problems, QLDPA is faster than algorithms
based on classical optimization (Zeghloul et al., 1992) and Red’s brute force method
(Llanas et al., 2000). CPU time of QLDPA seems to be similar to the LC algorithm
(Lin, 1993).

GJKC (Cameron, 1997) seems to be somewhat faster than QLDPA, but QLDPA
could be accelerated using a faster algorithm than Red’s for computing the distance
between polygons in R3.

The results of Table 2 have been obtained using pairs of E-polyhedra with the
same value of m and n. They are shown in the following graphs, that represent the
same data but using a different time scale.

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 381

0.5 1 1.5 2

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
4

QLDPA

SA

N

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

QLDPA

SA

N

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

Figure 8. High complexity.

Figure 8 shows that QLDPA is faster than SA when the total number of vertices
is greater than 17 000.

For very large polyhedra, the time that QLDPA needs for finding the initial pair
of faces (one projection) is almost equal to the time used for computing the distance
between polygons. SA needs to make at least four projections, so this increment of
time originates the result shown in the graphs.

We have not found experimental data reported by other authors in this range of
complexity.

In spite of the random character of the descent process, we have found in all the
experiments made with the choice of the initial faces indicated in Section 4.1, that
QLDPA only performs the descent process. It never performs a projection step (V).

4.3. CPU TIME VERSUS RELATIVE POSITION EXPERIMENTS

In this subsection we consider pairs of fixed polyhedra and study the variation of
the CPU time of QLDPA and SA in relation to the relative position of the poly-
hedra. In the experiments, we have decreased the distance between the polyhedra
keeping their orientation fixed.

The first experiment is shown in Figure 9.
The corresponding numerical results are given in Table 3.
The second experiment can be seen in Figure 10.
The corresponding numerical results are given in Table 4.

382 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

−1
−0.5

0
0.5

1

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

−1
−0.5

0
0.5

1

0

0.5

1

0

5

10

15

20

25

30

35

40

45

50

Figure 9. Polyhedra used in relative position experiments (1).

Table 3. Relative position Experiments (1) / (time × 10−6s)

Distance EPS t PREC TSA NISA TQLDPA NDP

1 10−6 0 < 10−6 923 23 127 8

0.5 10−6 0 < 10−6 1538 71 126 8

0.1 10−6 0 < 10−6 3878 182 126 8

0.01 10−6 0 < 10−6 8459 397 126 8

0.001 10−6 0 < 10−6 13243 626 126 8

0.0001 10−6 0 < 10−6 18257 857 126 8

The results of Tables 3 and 4 can be shown as graphs of distance versus runtime.
From Figure 11 it is clear that, when high precision is necessary, SA can present

slow convergence. QLDPA always exhibits a fast behavior with a moderate depend-
ence on the relative position of the polyhedra.

Table 4. Relative position experiments (2) / (time × 10−6s)

Distance EPS t PREC TSA NISA TQLDPA NDP

1 10−6 0 < 10−6 703 23 434 18

0.5 10−6 0 < 10−6 1076 36 434 18

0.1 10−6 0 < 10−6 2384 81 439 18

0.01 10−6 0 < 10−6 4878 168 440 18

0.001 10−6 0 < 10−6 7552 261 434 18

0.0001 10−6 0 < 10−6 10194 353 439 18

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 383

−1

0

1
0

5
10

0

1

2

3

4

5

6

7

8

9

10

−1

0

1

0
0.5

1

0

5

10

15

20

25

30

35

40

45

50

Figure 10. Polyhedra used in relative position experiments (2).

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

QLDPA

SA

Distance between the polyhedra (2)

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

QLDPA

SA

Distance between the polyhedra (1)

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

Figure 11. CPU time versus distance.

An important problem in applications is the tracking of the distance between
polyhedra when they move. When the speed is low enough or the time interval is
little enough, the tracking can be done by means of an incremental calculation. This
means that the algorithm considers as initial features at the instant t+�t the nearest
ones obtained at the instant t . We will call this procedure ‘with initialization’ (WI).
When the speed is high or the time interval is large, we have to compute the distance
without an initialization close to the solution. We denote this procedure ‘without
initialization’ (WOI).

384 B. LLANAS, M. FERNANDEZ DE SEVILLA AND V. FELIU

Although we have not studied the problem with initialization, QLDPA can be
easily adapted to the incremental computation. In a dynamic environment the to-
pological data are given at the beginning and they remain valid henceforth (if the
polyhedra are rigid bodies).

The CPU time behavior of some fast algorithms is summarized in the following
table.

Algorithm WOI WI �N

GJK O(N) O(N) 8 − 500

LC O(N) O(1) 8 − 500

GJKC Very slow growth O(1) 8 − 500

QLDPA Very slow growth O(1) 8 − 24 000

By �N we denote the complexity range studied in every case.

5. Conclusion

This paper presents a sufficient criterion for the distance between the the faces
of two convex polyhedra to be minimum. This result is applied to the design
of a new algorithm (QLDPA) for computing the distance between convex and
bounded polyhedra. The paper includes a wide set of numerical tests which show
the performance of the algorithm and its advantages compared with SA and other
algorithms.

– It has always obtained the exact solution, not an approximated one.
– When the complexity of polyhedra exceeds a given amount, QLDPA is faster

than SA.
– The rate of growth of the CPU time of QLDPA is very slow.
– The dependence of QLDPA on the relative position of the polyhedra is rather

moderate.
In dealing with low complexity problems QLDPA reduces the distance between
polyhedra problem to the computation of a comparatively little number of distances
between polygons in R3. An optimal method for solving this last problem could
give an optimal implementation of QLDPA. (An optimal method for computing
the distance between segments in R3 can be found in Lumelsky (1983)). Future
research on this topic would be interesting.

Acknowledgements

We thank the anonymous referees for the improvements they suggested. The re-
search work presented in this paper was financially supported by the Consejería

A SUFFICIENT CONDITION OF GLOBAL MINIMUM IN GEOMETRIC OPTIMIZATION 385

de Educación y Cultura de la Comunidad de Madrid and the electric company
IBERDROLA.

References

Balakrishnan, A.V. (1981), Applied Functional Analysis, Springer, New York, Heidelberg, Berlin.
Bobrow, J.E. (1989), A direct minimization approach for obtaining the distance between convex

polyhedra, The International Journal of Robotics Research 8, 65–76.
Cameron, S. (1997), A comparison of two fast algorithms for computing the distance between convex

polyhedra, IEEE Transactions on Robotics and Automation 13, 915–920
Dobkin, D.P. and Kirkpatrick, D.G. (1990), Determining the separation of preprocessed polyhedra-a

unified approach, In: Paterson, M.S. (ed.) Proc. 17th Internat. Colloq. Automata Lang. Program.,
Lecture Notes in Computer Science Vol 443, Springer, New York, Heidelberg, Berlin, pp. 400–
413

Fujishige, S. and Zhan, P. (1990), A dual algorithm for finding the minimum-norm point in a
polytope, J. of the Operations Research Society of Japan 33, 188–195.

Fujishige, S. and Zhan, P. (1992), A dual algorithm for finding a nearest pair of points in two
polytopes, J. of the Operations Research Society of Japan 35, 353–365.

Gilbert, E., Johnson, D.W. and Keerthi, S.S. (1988), A fast procedure for computing the dis-
tance between complex objects in three-dimensional space, I.E.E.E. Journal of Robotics and
Automation 4, 193–203.

Glaeser, G. (1994), Fast Algorithms for 3D-Graphics, Springer, New York, Heidelberg, Berlin.
Halperin, D., Kavraki, L. and Latombe, J.C (1997), Robotics, In: Goodman, J.E. and O’Rourke,

J.(eds.), Handbook of Discrete and Computational Geometry, CRC Press, Boca Ratón–New
York, pp. 755–778.

Hurteau, G. and Stewart, P. (1988), A distance calculation for imminent collision indication in a robot
system simulation, Robotica 6, 47–51.

Khatib, O. (1986), Real-time obstacle avoidance for manipulators and mobile robots, International
Journal of Robotics Research 5, 90–98.

Lin, M. (1993), Efficient Collision Detection for Animation and Robotics, Ph. D. Thesis, University
of California at Berkeley.

Llanas, B. and Moreno, C. (1996), Finding the projection on a polytope: An iterative method,
Computers Math. Applic. 32, 33–39.

Llanas, B., Fernández de Sevilla, M. and Feliú, V. (2000), An iterative algorithm for finding a nearest
pair of points in two convex subsets of Rn, Computers Math. Applic. 40, 971–983.

Lumelsky, V. J. (1985), On fast computation of distance between line segments, Information
Processing Letters 21, 55–61.

Red, W. E. (1983), Minimum distances for robot task simulation, Robotica 1, 231–238.
Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.
Sekitani, K. and Yamamoto, Y. (1993), A recursive algorithm for finding the minimum norm point

in a polytope and a pair of closest points in two polytopes, Mathematical Programming 61,
233–249.

Vince, J. (1995), Virtual Reality Systems, Addison-Wesley, Reading MA.
Wolfe, P. (1976), Finding the nearest point in a polytope, Mathematical Programming 11, 128–149.
Zeghloul, S., Rambeaud, P. and Lallemand, J. P. (1992), A fast distance calculation between convex

objects by optimization approach, Proc. of the 1992 IEEE International Conference on Robotics
and Automation, (Nice, France-May 1992) pp. 2520–2525

